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A neutrally buoyant droplet in a fluid possessing a temperature gradient migrates
under the action of thermocapillarity. The drop pole in the high-temperature region
has a reduced surface tension. The surface pulls away from this low-tension region,
establishing a Marangoni stress which propels the droplet into the warmer fluid.
Thermocapillary migration is retarded by the adsorption of surfactant : surfactant is
swept to the trailing pole by surface convection, establishing a surfactant-induced
Marangoni stress resisting the flow (Barton & Subramanian 1990).

The impact of surfactant adsorption on drop thermocapillary motion is studied for
two nonlinear adsorption frameworks in the sorption-controlled limit. The Langmuir
adsorption framework accounts for the maximum surface concentration Γ !¢ that can
be attained for monolayer adsorption; the Frumkin adsorption framework accounts
for Γ !¢ and for non-ideal surfactant interactions. The compositional dependence of the
surface tension alters both the thermocapillary stress which drives the flow and the
surfactant-induced Marangoni stress which retards it. The competition between these
stresses determines the terminal velocity U «, which is given by Young’s velocity U !

!
in

the absence of surfactant adsorption. In the regime where adsorption–desorption and
surface convection are of the same order, U « initially decreases with surfactant
concentration for the Langmuir model. A minimum is then attained, and U «
subsequently increases slightly with bulk concentration, but remains significantly less
than U !

!
. For cohesive interactions in the Frumkin model, U « decreases monotonically

with surfactant concentration, asymptoting to a value less than the Langmuir velocity.
For repulsive interactions, U « is non-monotonic, initially decreasing with con-
centration, subsequently increasing for elevated concentrations. The implications of
these results for using surfactants to control surface mobilities in thermocapillary
migration are discussed.

1. Introduction

The thermocapillary migration of a neutrally buoyant droplet in a fluid with a
temperature gradient arises from the variation in surface tension with temperature. The
droplet pole in the higher-temperature region has a reduced surface tension relative to
elsewhere on the drop interface. The interface exerts a Marangoni stress, pulling away
from the high-temperature pole. Viscous tractions provided by the internal and
external fluids balance the Marangoni stress, creating a flow field which sends the drop
in the direction of the temperature gradient. This phenomenon was first reported by
Young, Goldstein & Block (1959) who demonstrated the thermocapillary migration of
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a bubble in a gravitational field using an air bubble suspended in a liquid. The
suspending fluid formed a capillary bridge spanning an anvil. The lower anvil surface
could be maintained at a higher temperature than the upper surface. The bubble, being
less dense than the suspending liquid, rose in the absence of the applied temperature
gradient. However, when the lower surface of the anvil was heated, the bubble could
be held in position, i.e. the thermocapillary force exerted along the bubble interface was
able to oppose buoyancy. In an analysis which neglects convective heat transport, (i.e.
in the limit of zero thermal Pe! clet number), a theoretical expression for the temperature
gradient required to immobilize a bubble in a gravitational field was derived and found
to be in qualitative agreement with the bubble behaviour. The same theoretical
framework can be used to find the terminal velocity U !

!
of a surfactant-free drop or

bubble moving under the action of thermocapillarity.
In the past decade there has been renewed interest in thermocapillary-driven flows

because of the prospect of using thermocapillary drop migration as a means for
removing droplets and bubbles in microgravity materials processing. Several review
articles (Bratukin 1976; Hardy 1979; Subramaanian 1981, 1983, 1992; Wozniak,
Siekmann & Srulijies 1988) have been published, which recapitulate the prior research
on this subject. Below, only surfactant-related research in thermocapillary migration is
reviewed.

Experiments have been conducted on liquid drops migrating in a vertical temperature
gradient under the combined action of gravity and thermocapillarity by Lacy et al.
(1982), Barton & Subramanian and Nallani & Subramanian (1992). In the experiments
of Lacy et al., the drop velocity was found to scale correctly with both the drop radius
and the applied temperature gradient as predicted by Young et al. However, the
velocities observed were less than the predicted value.

In order to probe whether surfactant adsorption could explain the observed
retardartion, Barton & Subramanian performed drop migration experiments with and
without the surfactant Triton-X 100 for the system of ethyl-salicylate droplets in a
diethylene glycol continuous phase. In this system, the droplet phase is more dense
than the continuous phase, so that in the absence of an applied temperature gradient,
the droplet sank. When a temperature gradient was applied favouring drop rise, the
droplets rose in the absence of added surfactant. Once the surfactant Triton-X 100 was
added, however, the surface-driven thermocapillary force was sufficiently diminished
that the gravity dominated, and the droplets sank even in the presence of the
temperature gradient.

This experiment was modelled theoretically as a droplet moving in creeping flow
with an insoluble surfactant monolayer by Kim & Subramanian (1989a, b). Assuming
dilute surface concentrations, a linear surface equation of state relates the surface
tension to the concentration of adsorbed surfactant. In Kim & Subramanian (1989a),
the stagnant-cap limit was investigated, where surfactant swept to the trailing pole of
the droplet creates a ‘cap’ region in which the Marangoni stresses are strong enough
to stagnate the drop interface. Analytical solutions were obtained for the drop terminal
velocity and the surfactant distribution. In Kim & Subramanian (1989b), surface
diffusion redistributes surfactant on the interface, tending to oppose stagnant-cap
formation. Depending on the ratio of characteristic surface convective to surface
diffusive fluxes (i.e. the surface Pe! clet number for surfactant transport), a full range of
behaviour can be realized. For small surface Pe! clet numbers, surfactant distributions
vary only slightly from a uniform distribution on the interface, and the surface velocity
is slightly retarded along the entire drop interface. At high surface Pe! clet number,
stagnant-cap behaviour is approached.
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In the experiments of Nallani & Subramanian, a drop of lesser density than the
surrounding fluid was made to rise more rapidly by thermocapillary stresses. However,
the enhancement in the rise velocity was less than that expected by Young’s analysis
for a surfactant-free interface. They used the stagnant-cap model of Barton &
Subramanian to interpret their data, finding reasonable agreement between theory and
experiment.

This paper addresses the surfactant-induced retardation of pure thermocapillary
drop motion (i.e. in the absence of a gravitational field) in the limit of elevated
surfactant concentration in the external fluid. In this limit, the mass transfer is
ad}desorption-controlled. The linear model for the surface equation of state becomes
inadequate when concentrations become appreciable because of such effects as
monolayer saturation (accounted for in the Langmuir framework) and non-ideal
surfactant interactions (included in the Frumkin framework). The temperature field
and flow fields are modelled neglecting convective transport.

2. Problem statement

A neutrally buoyant spherical droplet of radius a« and viscosity µ«(") moves steadily
under the action of thermocapillarity in an unbounded Newtonian fluid of viscosity
µ«(#). The origin of a spherical coordinate system (r«, θ,φ), is located at the centre of the
droplet, the angle θ being measured from the front stagnation point (see figure 1). In
a droplet-fixed reference frame, the continuous phase far from the droplet moves with
velocity U « in the ®z«-direction. The outer fluid contains a surfactant at bulk
concentration C !

eq
which is immiscible in the droplet phase and possesses a constant

temperature gradient ¡T !¢ far from the droplet. The thermal conductivities for each
phase are denoted by δ«(i). (Here and throughout this article dimensional quantities are
denoted with primes, dimensionless quantities are unprimed. Droplet quantities are
denoted with superscript (1), continuous-phase quantities with superscript (2).) The
non-uniform surfactant surface concentration Γ « and temperature T « create a variation
in the surface tension γ« which is balanced by viscous shearing at the interface:

(τ(#)!
rθ

®τ(")!
rθ

) r
r«=a« ¯®

1

a«
¥γ«
¥θ

¯®
1

a«
¥γ«
¥T «

¥T «
¥θ )

r«=a«

®
1

a«
¥γ«
¥Γ «

¥Γ «
¥θ

, (1)

where τ(i)!
rθ

denotes the shear stress of the drop (i¯ 1) or exterior phase (i¯ 2). The first
term on the right-hand side of (1) is the thermocapillary stress which drives the flow;
the second is the surfactant-induced Marangoni stress which resists the thermocapillary
motion. The form of the adsorptive–desorptive fluxes determines the functional form
of γ«(Γ «,T «) in (1). In order to understand this dependence, first consider surfactant
adsorption along a droplet in an isothermal environment. The adsorption flux is
assumed to be first order in concentration C !

eq
, and first order in space remaining on

the interface, where Γ !¢ is the upper bound on the surfactant concentration for
monolayer adsorption. The desorption flux is first order in the surface concentration
Γ «. The difference between adsorption and desorption fluxes is the net bulk flux to the
interface:

®j !
r
¯β«C !

eq
(Γ !¢®Γ «)®α«Γ «, (2)

where β« and α« are the kinetic constants for adsorption and desorption, respectively.
These kinetic constants have an Arrhenius activation energy dependence:

β«¯β!

!
exp (®E !

a
}R«T «), (3)

α«¯α!

!
exp (®E !

d
}R«T «), (4)
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F 1. The droplet is depicted in a drop-fixed reference frame. The origin of a spherical coordinate
system (r«, θ,φ), is located at the centre of the droplet. The continuous phase moves with velocity U «
in the ®z«-direction under the action of thermocapillarity.

where E !
a
(E !

d
) denotes the energy of activation for adsorption (desorption) and R«T « is

the product of the ideal gas constant and the temperature.
At equilibrium, the bulk flux in (2) is zero, and the equilibrium adsorption isotherm

relating Γ !
eq

(C !
eq

) is obtained. If the activation energies are constant and denoted E !
a!

and E !
d!

, respectively, the Langmuir adsorption isotherm is obtained:

Γ !
eq

Γ !¢

¯
k

1k
. (5)

The adsorption number k, the ratio of the characteristic rates of adsorption to
desorption, can be considered a dimensionless bulk concentration, where k is defined

k¯
β!

!
C !

eq

α!

!

exp
®(E !

a!
®E !

d!
)

R«T «
. (6)

Non-ideal interactions among the adsorbed surfactant can create energy barriers to
adsorption or desorption which depend upon surface concentration. If this dependence
is linear, the energies can be expressed as

E !
i
¯E !

i!
ν!

i
Γ !

eq
, (7)

where the subscript i¯ a, d denotes adsorption and desorption, respectively, and ν!
i
is

the slope of the activation energy with respect to surface concentration. At equilibrium,
the Frumkin adsorption isotherm is obtained:

Γ !
eq

Γ !¢

¯
k

exp (®λΓ !
eq

}Γ !¢)k
, (8)
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where the interaction parameter λ is

λ¯
(ν!

d
®ν!

a
)Γ !¢

R«T «
. (9)

For inter-surfactant cohesion, the energy for desorption increases relative to that for
adsorption, and λ" 0. The converse is true for repulsive interactions. Notice that when
λ¯ 0 the Frumkin isotherm reduces to the Langmuir isotherm (i.e. no interactions).

The adsorption isotherms are graphed in figure 2(a). First consider the Langmuir
framework. The surface concentration asymptotes to the maximum coverage Γ !¢ at
elevated k. The linear adsorption equation is shown to agree with k' 1 behaviour of
the nonlinear frameworks, but it overpredicts the surface concencentration as k
approaches 1. The curves for which λ is non-zero illustrate how non-ideal interactions
alter the equilibrium distribution of surfactant. For a given bulk concentration of
surfactant (i.e. k fixed), greater Γ !

eq
values result for cohesive interactions among

adsorbed surfactant, lesser Γ !
eq

for repulsive interactions.
For the Frumkin framework, the surface equation of state relating γ!

eq
to Γ !

eq
is

determined by the Gibbs adsorption equation to be

γ!
eq

¯γ!

!
R«T «Γ !¢(ln [1®Γ !

eq
}Γ !¢]"

#
λ(Γ !

eq
}Γ !¢)#), (10)

where γ!

!
is the surface tension of the surfactant-free interface. The surface equation of

state for a Langmuir framework is obtained simply by equating λ to zero. The
equations of state are shown in figure 2(b). A comparison of the Langmuir and linear
frameworks show the effect of monolayer saturation. The linear asymptote to the
equation of state overpredicts the reduction in the surface tension as k approaches
unity.

The role of non-idealities is somewhat more complex. As λ increases from zero, the
surface tension becomes less sensitive to the adsorbed surfactant concentration.
However, the surface concentration realized for cohesion is much greater than that for
no interactions or repulsion. This introduces an insensitive region in the surface tension
graph at small k, where Γ !

eq
is small, and the quadratic cohesion term nearly balances

the logarithmic monolayer saturation term. At higher k, the surface tension decreases
rapidly, as the higher Γ !

eq
values realized cause the logarithmic term to dominate.

Repulsive interactions increase the sensitivity of γ!
eq

to Γ !
eq

, but have lower Γ !
eq

at a
given k. The result is a shallow surface tension reduction curve, i.e. the surface tension
is reduced less at a given k than for the no-interactions case. For a thorough discussion
of the implications of non-ideal interactions in the dynamics of surfactant exchange,
see Lin, McKeigue & Maldarelli (1994).

Because the droplet moves through a fluid with a temperature gradient, the local
temperature environment changes as the drop translates. This is a quasi-steady study
in which bubble location changes slowly so that the bubble reflects local averaged
quantities evaluated at a reference temperature T !

!
for all of the system parameters

except the surface tension. This reference temperature is equal to the temperature at the
drop equator infinitely far from the drop.

In order to incorporate non-isothermal effects in the surface tension, (10) is
expanded linearly in T « about T !

!
:

γ!
eq

¯γ!

!
r
T «=T !

!

R«T «Γ!¢(ln [1®Γ !
eq

}Γ !¢]"

#
λ(Γ !

eq
}Γ !¢)#)

¥γ!

!

¥T «
(T «®T !

!
). (11)

The derivative ¥γ!

!
}¥T « is the surface excess entropy of a pure material, which is always

negative. The surface equation of state is assumed to be obeyed locally for a non-
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F 2. (a) The linear, Langmuir (λ¯ 0) and Frumkin λ¯ 2, 1,®1,®2 isotherms are graphed.
For a given k value, the Γ !

eq
}Γ !¢ values which result are greater for cohesion, and smaller for repulsion

when compared to the Langmuir case. (b) The surface tension reduction (γ!

!
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eq
}R«T «Γ !¢) for the

linear, Langmuir Frumkin equations of state are plotted vs. k.

uniform Γ « so that γ« is related to Γ « and T « by (11). The derivative of this expression
therefore determines the Marangoni stresses which develop:
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(12)
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where the parameters k, λ and Γ !¢ are assumed independent of temperature. In (12),
as Γ « approaches Γ !¢ (i.e. as the interface approaches monolayer saturation), the
temperature derivative becomes strongly negative, indicating that the γ« becomes
increasingly sensitive to temperature at elevated surface concentrations. The surface
concentration derivative also diverges, indicating that strong surfactant-induced
Marangoni stresses develop which slow the surface convective flux of surfactant to the
drop trailing pole, thereby stopping the surface concentration from reaching Γ !¢.

Non-ideal interactions also impact the stresses which develop. For cohesion,
surfactant finds it energetically favourable to accumulate: the interaction parameter
λ" 0, and smaller Marangoni stresses (thermal or surfactant-induced) develop relative
to the Langmuir or repulsive cases for identical Γ « distributions. However, on the
moving droplet, λ strongly impacts the distributions realized because of the dependence
of the sorption kinetics on the interactions: for λ" 0, α« decreases with Γ «, producing
greater Γ « gradients and stronger Marangoni stresses.

Through the interaction parameter λ, only the difference between ν!
d

and ν!
a

appears
in the surface equation of state and isotherm. However, their individual values
determine the adsorption and desorption kinetic constants, (3) and (4). In this study,
we assume that ν!

a
is zero, i.e. cohesion and repulsion are assumed to change the

kinetics for desorption alone.

3. Governing equations in non-dimensional form

In order to cast the governing equations in dimensionless form, the velocity is scaled
with U !

!
, the migration velocity of a surfactant-free droplet in an infinite medium

(Young et al.) :

U !

!
¯

a«(®¥γ«}¥T «)¡T !¢

µ(#)«(13κ}2)(2δ)
, (13)

where the ratio κ is the viscosity ratio of the droplet to the continuous phase:

κ¯µ(")«}µ(#)«, (14)

and the ratio δ is the conductivity ratio of the droplet to the continuous phase:

δ¯ δ(")«}δ(#)«. (15)

Lengths are scaled with the droplet radius a« ; Γ « is made dimensionless with Γ !
eq

; the
bulk concentration of surfactant C « is scaled with C !

eq
, the normal flux to the interface

j !
r

is scaled with Γ !
eq

U !

!
}a«, and the viscous stresses and pressure p« are made

dimensionless with µ«(#)U !

!
}a«. Surface tension gradients are scaled with R«T !

!
Γ !¢.

Surfactant transport is considered in the limit where sorption kinetics between the
sublayer and the interface are controlling. The temperature field is considered in the
limit of negligible convective transport. The flow is considered in the creeping flow
limit, and the droplet is assumed to remain spherical. The restrictions that these
assumptions place on the system parameters in addition to the obvious restriction to
negligible Reynolds number Re are detailed below.

The assumption that the droplet deformation is negligible is certainly valid if the
system capillary number, the ratio of viscous stresses (which tend to deform the
droplet) to surface tension (which resists deformation), is very small. However, under
creeping flow conditions, drop deformation may not be important, even at finite
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capillary number. Haj-Hariri et al. (1995) recently studied the droplet deformation in
thermocapillary migration of droplets as a function of thermal Pe! clet number (termed
the Marangoni number in their work). It was reported that increasing the Marangoni
number alone does not lead to substantial deformations at Re¯ 0, even for capillary
numbers on the order of unity. Nor has substantial deformation been reported in
thermocapillary migration experiments. As reported by Subramanian (1992) in a recent
review article, in no experiments reported for thermocapillary migration up to 1992,
whether under the influence of gravity or in a low-gravity environment, has a
measurable deformation in shape from a sphere been observed.

In both the drop and external-fluid phases a dimensional energy balance can be
written:

ρ(i)«C (i)!
p

�(i)«[¡«T (i)«¯ δ(i)«~#«T (i)« (16)

where C (i)!
p

is the specific heat capacity, �(i)« is the velocity field, ρ(i)« is the density and
δ(i) is the conductivity of the phase under consideration. A dimensionless temperature
field is defined:

Θ¯
T «®T !

!

a«¡«T !¢

. (17)

Recast in dimensionless form, the energy balance is

1

Pe(i)
t

�(i)[¡Θ(i)¯~#Θ(i), (18)

where the thermal Pe! clet number for each phase Pe(i)
t

,

Pe(i)
t

¯
U !

!
a«

α«
, α«¯

ρ(i)«C (i)!
p

δ(i)«
, (19)

is the characteristic rate of convective heat transport to conductive transport. In our
analysis, thermal Pe! clet numbers are assumed negligibly small, and the temperature
field is governed by Laplace’s equation:

~#Θ(i)¯ 0. (20)

In the absence of motion, surfactant adsorbs along the interface, establishing the
surface concentration Γ !

eq
and surface tension γ!

eq
. Drop motion redistributes the

surfactant : a steady non-equilibrium surface concentration Γ « develops when the
surface convective flux toward the trailing pole of the droplet is balanced by the flux
from the bulk (Levich 1962) :

¡!
s
[(Γ «�!

s
)®D!

s
~#Γ «¯®j !

r
. (21)

In this expression, �!
s
is the surface velocity, ¡!

s
is the surface gradient operator, D!

s
is

the surface diffusion coefficient and ®j !
r

is the flux from the bulk toward the drop
surface. In dimensionless form, the surface mass balance is

¡
s
[(Γ�

s
)®

1

Pe
s

~#
s
Γ¯®j

r
, (22)

where the surface Pe! clet number,

Pe
s
¯U !

!
a«}D!

s
, (23)
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is the characteristic ratio of surface convective to surface diffusive transport. Surface
diffusivities are typically of order 10−' cm# s−". For droplets of radius of 0±01 cm,
typical U !

!
are about 10−# cm s−". For these values, Pe

s
is typically order 100. In our

analysis, it is assumed that Pe
s
tends to infinity, and surface diffusion is neglected.

In general, the flux j !
r

controlled by both diffusion flux of surfactant toward the
interface, which establishes the sublayer concentration, and the subsequent partitioning
of surfactant between the sublayer and the interface by adsorptive–desorptive
exchange. The diffusion flux j !

rD
is

j !
rD

¯D«
¥C «
¥r« )

r«=a«

, (24)

where the bulk concentration C « is uniform at C !
eq

far from the droplet. In non-
dimensional form, the diffusive flux becomes

j
rD

¯
1

Pe

1

h

¥C
¥r )

r="

, (25)

where Pe is the bulk Pe! clet number, the ratio of characteristic bulk convective fluxes
to bulk diffusive fluxes :

Pe¯U !

!
a«}D«, (26)

and h is the adsorption depth, a characteristic depth beneath the interface depleted by
surfactant adsorption:

h¯Γ !
eq

}C !
eq

a«. (27)

As C !
eq

increases, Γ « approaches its saturation value Γ !¢, and the adsorption depth h
approaches zero. In order for the dimensionless diffusion flux to remain bounded in
this limit, C becomes uniform, and the diffusion flux of surfactant becomes rapid even
at large bulk Pe! clet number. In this limit, surfactant transport is governed by the
adsorption}desorption flux between the sublayer and the interface.

Adopting these assumptions, bulk diffusion is instantaneous, maintaining a uniform
bulk concentration, C¯ 1. The steady dimensionless surface mass balance expressed
in spherical coordinates is

1

sin θ

¥
¥θ

(sin θΓ�
s
)¯Bi 9k 01y®Γ1®Γ exp (®λΓy): , (28)

where �
s
is given by �θ(θ, r¯ 1). In this expression, y¯Γ !

eq
}Γ !¢, given by (5) for the

Langmuir model and by (8) for the Frumkin model. The Biot number is the ratio of
characteristic desorptive fluxes to characteristic surface convective flux:

Bi¯
α
!
exp (®E

a!

!

}R«T «

!
) a«

U «
. (29)

In dimensionless form, the tangential stress balance becomes

(τ(#)
rθ

®κτ(")
rθ

) r
r="

¯ (13κ}2)(2δ) 9E(Gθ1) 0 y

1®Γy
®λΓy#1 ¥Γ

¥θ

®[EG(ln (1®Γy)"

#
λΓ#y#)®1]

¥Θ
¥θ : , (30)
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where the elasticity number E is a ratio of characteristic surfactant-induced Marangoni
stresses which resist the droplet motion to the characteristic (surfactant-free)
temperature-induced Marangoni stresses which drive the flow:

E¯
R«T !

!
Γ !¢

a«(®¥γ!

!
}¥T «)¡T !¢

. (31)

Finally, G is a characteristic normalized temperature gradient across the droplet :

G¯¡T !¢ a«}T !

!
. (32)

Attention is restricted to G' 1 because of the assumption of linear dependence of the
surface tension on the temperature field, and the fact that temperature dependence of
the other system parameters has been neglected.

The boundary conditions on the temperature fields are :
(i) the heat flux and temperature are continuous across the drop interface

δ
¥Θ(")

¥r
¯

¥Θ(#)

¥r
, Θ(")¯Θ(#) ; (33)

(ii) far from the drop, the temperature field in the continuous phase is linear in z

lim
rrrU¢

Θ(#)¯ z ; (34)

(iii) at the centre of the sphere the temperature is finite.
The solution for the temperature field is straightforward (see Young et al.), yielding

the external and internal temperature fields :

Θ(")¯ r cos θ
3

2δ
, Θ(#)¯ r cos θr−# cos θ

1®δ

2δ
. (35)

For an axisymmetric and incompressible flow, velocities may be represented by a
stream function Ψ «, which is scaled with a«#U !

!
. Stokes’ equations for steady

axisymmetric creeping flow in terms of the stream function are

E#(E#ψ(i))¯ 0, (36)

where E# is the axisymmetric stream function operator in spherical coordinates :

E#¯
¥#

¥r#


sin θ

r#

¥
¥θ 0

1

sin θ

¥
¥θ1 . (37)

The velocity components in terms of the stream function are

�(i)
r

¯®
1

r# sin θ

¥ψ(i)

¥θ
, �(i)θ ¯

1

r sin θ

¥ψ(i)

¥r
. (38)

The general form of the solution of (36) in spherical coordinates can be found by
separation of variables to be

Ψ(i)(r, θ)¯ 3
¢

n=!

(A(i)
n

rnB(i)
n

r−n+"C (i)
n

rn+#D(i)
n

r−n+$)Q−"/#
n

(cos θ), (39)



Surfactant-induced retardation of the migration of a droplet 45

where i¯ 1, 2 respectively and Q−"/#
n

(cos θ) is the Gegenbauer polynomial of degree
®1}2 and order n. The unknown coefficients in this series expansion are determined
by the boundary conditions, enumerated below.

(i) Far from the droplet, the uniform velocity field requires that the stream function
obey

lim
rU¢

ψ(#)¯ "

#
Ur# sin# θ. (40)

(ii) At the droplet centre �(")
r

and �(")θ exist.
(iii) At droplet surface, the tangential velocity components must be continuous:

�(")θ (1, θ)¯ �(#)θ (1, θ). (41)

(iv) The normal velocities are zero at the interface:

�(")
r

(1, θ)¯ �(#)
r

(1, θ)¯ 0. (42)

(v) Since the droplet is assumed a priori to remain spherical, the normal stress
balance on the interface is replaced by an integral force balance to find F !

z
, the net drag

exerted on the particle. For the stream function form in (39) F !
z
reduces to (Happel &

Brenner 1973)
F !

z
¯ 4πµ(#)«U «D(#)

#
. (43)

For thermocapillary migration in the absence of body forces, the viscous stress and
surfactant-induced stresses resisting the droplet motion are balanced by thermocapillary
stress which drives the flow. Thus, at steady state, the net force on the droplet is zero,
and D(#)

#
¯ 0.

(vi) The tangential stress jump at the interface is balanced by the Marangoni stress,
as expressed in (30).

The surface concentration Γ is coupled to the flow field by the surface mass balance
(28) and the tangential stress balance (30). The flow field is coupled with the
temperature field (35) through the tangential stress (30). The fluid mechanics equations
and the surface mass balance must be solved simultaneously to find the flow field and
surfactant distribution. The solution technique is detailed in the Appendix to this
article.

4. Results and discussion

Several of the parameters governing the system behaviour have been varied to
confirm that expected limits are recovered. For example, the system was studied as a
function of the conductivity ratio δ and the viscosity ratio κ. As δ becomes large, the
temperature gradient over the droplet interface disappears, and the droplet interfacial
motion is arrested. The effects of κ on the flow field are discussed in greater detail in
§4.6. Surfactant effects are discussed in §§4.1–4.5 for κ¯ 0.

The surfactant-related parameters include the elasticity number E, the Biot number
Bi, the adsorption number k and the non-ideality parameter λ. The results are
discussed first for the case in which surfactant molecules do not interact, λ¯ 0, and the
surfactant is described by the Langmuir adsorption framework.

4.1. Langmuir results

The Γ and Marangoni stress profiles are shown in figures 3(a) and 3(b), respectively.
The corresponding �

s
profile and terminal velocity ratio U are shown in figures 4(a) and

4(b), respectively. First consider the Bi¯ 1.0 results which are shown for the Langmuir
and linear frameworks. The linear isotherm strongly overpredicts the Γ « gradients
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F 3. (a) The Γ «(θ)}Γ !¢ profies and (b) the Marangoni stress profiles for the Langmuir
framework as a function of Bi for k¯ 1.0, E¯ 1.0, G¯ 0.05 and δ¯ 1. Curves are plotted for
Bi¯ 0.05, 0.5, 1, 5, 50, and for the linear isotherm at Bi¯ 1.0.

realized, because there is no upper bound on Γ « in this model. In contrast, none of the
nonlinear results allow Γ « to reach Γ !¢. In this flow, a positive Marangoni stress
indicates that the interface pulls from the front to the back pole, propelling the drop
upward. The linear isotherm overpredicts the surfactant-induced reduction in this
driving stress.

At elevated Bi, the terminal velocity approaches Young’s velocity, and U approaches
1. In this limit, adsorption–desorption is rapid relative to the surface convective flux,
and the surface concentration is maintained close to its uniform, equilibrium value. As
Bi is decreased, however, the gradients in surface concentration become pronounced,
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F 4. (a) The surface velocity profile �
s
(θ) as a function of Bi at k¯ 1.0, E¯ 1.0, G¯ 0.05 and

δ¯ 1, for the Langmuir framework. Curves are plotted for Bi¯ 0.05, 0.5, 1, 5, 50 and for the linear
isotherm at Bi¯ 1.0. (b) The terminal velocity ratio U vs. Bi as a function of E for k¯ 1.0, G¯ 0.05
and δ¯ 5. Curves are plotted for E¯ 0.5, 1.0, 5.0, 10, and for the linear isotherm at E¯ 1.0.

producing strong surfactant-induced Marangoni stresses retarding the surface flow. At
Bi¯ 0±05, stagnant-cap behaviour is approached, with the surface concentration being
significantly depleted at the leading end of the drop and significantly enriched at the
trailing end. The thermocapillary effect is able to create a surface tension gradient to
drive a surface flow only at the leading portion of the droplet. At all other regions of
the interface, �

s
departs only slightly from zero. In this limit, U is strongly retarded.

Figure 4(b) also shows the impact of the elasticity number E. As E is increased, the
coupling between the surfactant distribution and the droplet motion becomes more
pronounced.
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F 5. The terminal velocity ratio U vs. Bi as a function of λ for the Frumkin framework at
k¯ 1, E¯ 1.0, G¯ 0.05 and δ¯ 5. Curves are plotted for λ¯®2,®1, 0, 1, 2.

The group G defined in (32), appears in the dimensionless tangential stress balance
(30) as a factor both for the temperature in the surfactant-induced stress and for the
surfactant-dependent part of the thermocapillary stress. In this study, only the G values
of 0.05 and 0.1 were considered. The greater is G, a dimensionless characteristic
thermal gradient across the droplet, the greater is the migration velocity. For example,
for k¯ 1.0, κ¯ 0, Bi¯ 1.0, E¯ 1.0 and λ¯ 0, the terminal velocity increased slightly
with G : U(G¯ 0.05)¯ 0.4104, while U(G¯ 0.1)¯ 0.4252.

4.2. Frumkin framework results

Non-ideal interactions alter surfactant behaviour in three ways. For cohesion, greater
Γ !

eq
}Γ !¢ values result at fixed k ; the sensitivity of the surface tension to Γ « decreases ;

and the desorption coefficient α« decreases. The opposite trends hold for repulsion. In
order to understand the impact of these interactions, the terminal velocity for the
droplet was studied at fixed k for various λ values. The results are shown in figure 5;
cohesion (λ" 0) reduces U, and repulsion (λ! 0) increases U at fixed bulk
concentration. However, the amount of surfactant on the interface for the different λ
values differs strongly ; the decrease in U might be attributable to this alone. In order
to separate this effect from the surface tension dependence and desorption dynamic
effects, the droplet was studied at fixed mass of adsorbed surfactant :

&
π

!

Γ «(θ)}Γ !¢ sin θdθ¯ 0.8, (44)

corresponding to an average surface coverage of 0.4. The results for fixed adsorbed
mass for Γ «(θ)}Γ !¢ and the Marangoni stress are presented in figures 6(a) and 6(b),
respectively. The corresponding �

s
(θ) profiles are given in figure 7(a). Finally, U vs. λ

is graphed in figure 7(b). These figures show that increasing λ favours stronger surface
concentration gradients which reduce the thermocapillary stress that drives the flow.
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F 6. (a) The profiles for Γ «}Γ !¢ and (b) the Marangoni stress for λ¯ 3, 1, 0,®1,®3 for
fixed surface mass, Bi¯ 1, E¯ 1, G¯ 0.05 and δ¯ 5.

The surface velocity and the terminal velocity are therefore retarded. The effect of λ on
the flow is pronounced: for strong cohesion (λ¯ 3), the surface tension gradient
actually reverses direction at the trailing end of the droplet, where the surfactant-
induced stress dominates. The surface velocity is strongly retarded, and is reduced to
U¯ 0.15. In contrast, for repulsion (λ¯®3), weak surface concentration gradients
are realized, and U¯ 0.57.

The strong retardation exhibited for cohesive interactions results from the desorption
rate α«, which shows as Γ « increases. Thus, the desorption rate at the rear pole slows
as surfactant accumulates there, favouring further accumulation. Conversely, for
repulsion, areas of higher surface concentration have faster desorption kinetics,
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(θ) for λ¯ 3, 1, 0,®1,®3 for fixed surface mass, Bi¯ 1,

E¯ 1, G¯ 0.05 and δ¯ 5. (b) The terminal velocity ratio U vs. λ for fixed surface mass, Bi¯ 1,
E¯ 1, G¯ 0.05 and δ¯ 5.

favouring a uniform surfactant distribution on the surface. As a result, cohesive
interactions act to strongly retard a surface flow, and repulsive interactions act to resist
this retardation.

4.3. Surface remobilization : using surfactants to control thermocapillary motion

Surface remobilization is unretarded free-surface flow at elevated bulk surfactant
concentration. Remobilization can be realized with a surfactant whose adsorption–
desorption rates are rapid compared to the surface convective flux (i.e. Bi infinite). For
these surfactants, the adsorption depth h defined in (27) can be forced to zero as the
bulk concentration is made large, and the surface concentration can be made uniform.
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F 8. The terminal velocity ratio U vs. k as a function of λ for the Frumkin framework at
Bi¯ 3, E¯ 1.0, G¯ 0.05 and δ¯ 3. Curves are plotted for λ¯®2,®1, 0, 1, 2 and the linear
framework. In addition, the terminal velocity ratio for a gravity-driven droplet for the same
surfactant physical chemistry (Bi¯ 3, E¯ 1.0) is shown.

Thus, the surface remains free of surfactant-induced Marangoni stresses, and the drop
interface should be restored to a mobile condition. The arguments behind restored
surface motion are detailed in Stebe, Lin & Maldarelli (1991), Stebe & Maldarelli
(1994), and briefly reviewed in Chen & Stebe (1996).

The conditions for remobilization are met at large Bi and large k. However, the
large-k behaviour of U at finite Bi indicates the degree of restored free interfacial
motion that can be obtained at finite adsorption–desorption kinetics. The results in
figure 8 for Bi¯ 3.0 show that the cohesive interactions (λ¯ 2) asymptote to U¯ 0.05,
indicating that, as Γ « approaches Γ !¢, α« is sufficiently slow that appreciable surfactant-
induced Marangoni stresses develop to strongly resist the flow.

For the Langmuir case, a minimum in the U vs. k profile is reached; U subsequently
increases weakly with k. This non-monotonic behaviour can be attributed to the
ln (1®Γ «}Γ !¢) term in the thermocapillary stress driving the flow, which becomes
stronger as the maximum surface packing limit is approached.

Finally, the droplet is nearly restored to free-surface flow at k¯ 100 for strong
repulsion, λ¯®2. This is attributable primarily to the desorption constant α«, which
becomes rapid as the surface concentration increases toward Γ !¢. These results indicate
that surface remobilization at elevated bulk concentration is favoured by repulsion and
resisted by cohesion.

4.4. Comparison to retardation of a settling droplet

Recently, a related study of the impact of surfactant adsorption on the terminal
velocity of droplets settling in a gravitational field has been performed (Chen & Stebe
1996). For gravity-driven flow, the complete stagnation of the droplet interface does
not prevent drop motion, but rather the droplet settles at Stokes’ velocity. The
complete stagnation of an interface in pure thermocapillary-driven motion, however,
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F 9. The streamlines for the Langmuir framework at Bi¯ 3, E¯ 1.0, G¯ 0.05, δ¯ 3,
and k¯ 1.

completely arrests the flow. Therefore, the reduction in the terminal velocity caused by
surfactant adsorption in thermocapillary-driven drop motion is greater than that
realized in the gravity-driven flow for the same surface equation of state. A comparison
between the results from the two studies is shown in figure 8, where the reduction in
the terminal velocity (scaled by Stokes’ velocity) of a droplet settling under gravity at
identical Bi and E for a surfactant described by the Langmuir formalism is presented.
At k¯ 100, the settling droplet moves with roughly 80% of its unretarded velocity, but
the corresponding thermocapillary-driven flow moves with only roughly 46% of its
unretarded velocity.

4.5. Streamlines

Shankar & Subramanian (1988) studied finite convective thermal transport in drop
thermocapillary motion, which disrupts the fore–aft symmetry of this flow. They
presented the streamlines in a laboratory-fixed reference frame, revealing recirculating
regions which were generated behind the droplet.

In the current problem, surfactant accumulation at the trailing pole of the drop
disrupts fore–aft symmetry. Typical streamlines for the Langmuir adsorption
framework are shown in figure 9. As in the flow configuration of Shankar &
Subramanian, a separatrix streamline cuts across the flow. The streamlines are toward
the droplet above the separatrix streamline, and away from the droplet below the
separatrix streamline. This may influence issues such as particle–particle interactions,
in that particles far from the drop or bubble are convected toward the particle above
the separatrix, and convected away from it below. In table 1, the location of the
separatrix streamline on the drop axis (z

sep
) is tabulated from the linear, Langmuir and

Frumkin frameworks as a function of k under the conditions reported in figure 9.
First consider the separatrix location for the Langmuir framework. U decreases

monotonically for k less than 50. However, z
sep

is not monotonic in k : first it
approaches the droplet for k! 1, and then it migrates away. Therefore, this distance is
not determined solely by the droplet terminal velocity. Rather, at k! 1, increasing k
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λ¯ 0 λ¯ 2 λ¯®2

k U ®z
sep

U ®z
sep

U ®z
sep

0.1 0.8823 7.785 0.7991 3.749 0.9110 12.5054
0.5 0.6585 4.014 0.1909 1.406 0.8200 12.4845
1.0 0.5623 4.091 0.1183 1.927 0.8001 17.1212
5.0 0.4511 5.972 0.0891 3.315 0.8180 47.4059

10 0.4400 6.755 0.0882 3.516 0.8448 71.2642
50 0.4481 7.408 0.0911 3.541 0.9216 —

100 0.4578 7.356 0.0932 3.480 0.9547 —

T 1. The axial location of the separatrix streamline as a function of k for the Langmuir
framework (λ¯ 0), cohesion (λ¯ 2), and repulsion (λ¯®2) for Bi¯ 3, E¯ 1.0, G¯ 0.05 and
δ¯ 3.0

increases the gradients realized in the surface concentration and in the surface velocity,
strongly disrupting the droplet fore–aft symmetry. At higher bulk concentrations, the
surface is increasingly sensitive to surface concentration gradients. (This is evident
from the tangential stress balance (30) when y is expressed in terms of k.) The surface
velocity reduces strongly for smaller surface concentration gradients. The reduced
surface convective flux therefore leads to smaller Γ gradients in the steady-state
distribution. The Γ profiles are presented as a function of k in figure 10(a), the
corresponding surface velocity profiles are shown in figure 10(b). Because of the strong
coupling, U is significantly retarded by a smaller disruption of fore–aft symmetry.
Finally, for k" 20, the small inward migration of the separatrix location can be
attributed to the ln (1®Γ «}Γ !¢) term in the thermocapillary stress, which slightly
increases �

s
and the Γ gradients.

A similar explanation holds for the cohesive-interactions case, save that the effective
Biot number Bi

eff
,

Bi
eff

¯Bi exp (®λΓ ), (45)

decreases from 3 to about 0.4 for the results reported here, favouring stronger
disruptions from fore–aft symmetry at all k than the Langmuir result. Thus, the
separatrix is always closer to the droplet than for the Langmuir case.

The distance from the droplet of the separatrix streamline for the repulsive case
increases monotonically with k. For this case, Bi

eff
increases with bulk concentration

to a maximum value of about 20. The desorption flux becomes rapid relative to the
surface convective flux, and the surface concentration departs only slightly from its
equilibrium value along the interface. Under these conditions, the fore–aft symmetry
of the droplet is greater than for the corresponding Langmuir and cohesive cases and
the separatrix distance is always further from the droplet.

4.6. The effect of droplet �iscosity

The above discussion is for the viscosity ratio κ of zero. However, the migration
velocity results apply regardless of κ. The viscosity ratio was varied in the simulations;
its effect on the dimensionless terminal velocity (normalized by Young’s migration
velocity (13)) were very slight. That is, the κ dependence in Young’s migration velocity
holds even when there are significant Marangoni effects. For example, in table 2, the
dimensionless terminal velocity U and separatrix location z

sep
are tabulated as a

function dimensionless concentration k for viscosity ratios κ¯ 0 and 0.5 for Bi¯ 3,
E¯ 1.0, G¯ 0.05 and δ¯ 3. The separatrix location is slightly closer to the viscous
droplet, but the migration velocity is nearly unchanged. The insensitivity of the
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framework at k¯ 0.1, 1.0 and 10 for Bi¯ 3, E¯ 1, G¯ 0.05 and δ¯ 3.

k U (κ¯ 0) ®z
sep

(κ¯ 0) U (κ¯ 0.5) ®z
sep

(κ¯ 0.5)

0.1 0.8823 7.785 0.8824 6.904
0.5 0.6585 4.014 0.6589 3.687
1.0 0.5623 4.091 0.5627 3.809
5.0 0.4511 5.972 0.4513 5.661

10 0.4402 6.755 0.4402 6.423
50 0.4481 7.408 0.4484 7.063

100 0.4578 7.356 0.4580 7.0165

T 2. The axial location of the separatrix streamline as a function of k for the Langmuir
framework (λ¯ 0), cohesion (λ¯ 2), and repulsion (λ¯®2) for Bi¯ 3, E¯ 1.0, G¯ 0.05 and
δ¯ 3.0
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κ U

0 0.5623
0.5 0.5628
1.0 0.5628
2.0 0.5630
5.0 0.5631

T 3. The terminal velocity ratio U as a function of λ for k¯ 1.0 for the Langmuir
framework for Bi¯ 3, E¯ 1.0, G¯ 0.05 and δ¯ 3, and various κ values

dimensionless migration velocity to the viscosity of the bulk fluid is further
demonstrated in table 3, where U changes by less than 3% when κ is varied from zero
to 5 at fixed k at the same parameter values.

5. Conclusions

Surfactant effects on the thermocapillary motion of droplets were studied at elevated
bulk surfactant concentrations for which the mass transfer is adsorption limited and
the adsorption isotherm and equation of state are nonlinear.

The Langmuir model accounts for monolayer saturation, i.e. that there is an upper
bound on the surface concentration that can be realized for monolayer coverage. The
linear model has no such upper bound, and strongly overpredicts the surface
concentration gradients and retardation of the flow in comparison to the Langmuir
results.

The role of non-ideal interactions among adsorbed surfactant was probed using the
Frumkin adsorption framework for the case where the adsorbed mass of surfactant is
held constant. Cohesive interactions are shown to strongly retard the desorption rate
as the surface concentration approaches maximum coverage, and significantly greater
retardation of the thermocapillary flow results. Conversely, repulsive interactions
among surfactants facilitate desorption from the interface. Thus, lower surface
concentration gradients result, and the thermocapillary migration velocity is less
reduced than for the corresponding Langmuir case.

Remobilization is a paradigm for controlling surface mobilities at elevated bulk
concentrations in the infinite-Bi limit. At finite Bi, the terminal velocity realized at
elevated k for Langmuir and Frumkin isotherms indicates the fastest terminal velocity
that can be attained by adding a surfactant at elevated concentrations.

At finite Bi, the migration velocity for the Langmuir framework falls to a retarded
value at elevated k. (A small upward trend in U with concentration is observed
because of the enhanced sensitivity of the thermocapillary effect as the surface
concentration approaches its upper bound.)

The Frumkin isotherm shows non-monotonic behaviour in U with k for repulsion.
The terminal velocity decreases initially with k, subsequently increasing as Bi

eff

increases as Γ « approaches Γ !¢. For strong repulsive interactions, Bi
eff

can increase
significantly above Bi, and this non-monotonic behaviour is pronounced. Cohesive
interactions yield monotonically decreasing U which asymptote to U less than unity at
large k. Thus, the amount of free-surface motion that can be restored at elevated bulk
concentrations is greater for repulsive interactions and less for cohesive interactions.

Recirculating regions in the flow in the laboratory-fixed frame indicate the degree of
disruption of fore–aft symmetry, which is not related simply to the degree of surface
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retardation. The role of non-ideal interactions is pronounced: repulsion favours
fore–aft symmetry through rapid desorption kinetics and recirculating regions are far
from the droplet ; cohesion favours greater Γ gradients through slower desorption
kinetics, and recirculating regions are closer to the droplet.

Finally, the effects of viscosity on the dimensionless migration velocity are extremely
slight. For any given degree of surfactant-induced surface retardation, the dimension-
less migration velocity is reduced. However, the magnitude of this reduction is
insensitive to changes in the viscosity ratio. This implies that viscous effects are well
described by the viscous drag at surfactant-free interfaces, included in Young’s
migration velocity U !

!
, which was used to normalize the dimensionless migration

velocity.

Appendix. Solution technique

After the boundary condition (34) specifying boundedness at the drop centre and
(40)–(42) are applied to (39), the stream function can be rewritten in terms of the
unknown coefficients B(#)

n
:

Ψ (")(r, θ)¯ 3
¢

n=#

B(#)
n

(rn®rn+#)Q−"/#
n

(cos θ)®"

%
U(r#®r%) sin# θ, (A 1)

Ψ (#)(r, θ)¯ 3
¢

n=#

B(#)
n

(r−n+"®r−n+$)Q−"/#
n

(cos θ)"

#
U(r#®r) sin# θ. (A 2)

The surface velocity is directly obtained from (A 1), (A 2), and (38) to be

�
s
¯ �θ(1, θ)¯ "

#
U sin θ®2 3

¢

n=#

B(#)
n

Q−"/#
n

(cos θ)

sin θ
, (A 3)

and U¯®B(#)

#
to satisfy D(#)

#
¯ 0.

The surfactant concentration Γ(θ) is expanded in Legendre polynomials :

Γ(θ)¯ 3
¢

m=!

a
m

P
m
(cos θ), (A 4)

where P
m
(cos θ) is the Legendre polynomial of order m.

The solution entails finding the unknown coefficients B(#)
n

and a
m
. Substituting (A 3)

and (A 4) into the surface mass balance (28) and the tangential stress balance (30), two
nonlinear equations result :
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Equations (A 5) and (A 6) are solved simultaneously using a multiple collocation
technique (Finlayson 1972). The infinite series are truncated to include terms up to a

M

and B(#)
N

. A system of MN unknowns results, requiring MN equations for their
evaluation, obtained by evaluating (A 5) and (A 6) at (MN )}2 equidistant discrete
collocation points along the droplet surface. A set of MN nonlinear algebraic
equations result in terms of the unknown constants :
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(In these expressions, i denotes the collocation point (i¯ 1, 2,… (NM )}2) taken
along the droplet surface (0°! θ

i
! 180°). The equation set is solved by Newton’s

iteration for the unknown constants a
m

and B
n
. Initial guesses for the unknowns are

obtained by an incremental process. Analytical values for a
!
–a

#
and B(#)

#
–B(#)

%
are found

from a perturbation study about infinite Bi. At finite large Bi, using small deviations
from these values, the remaining coefficients are found to satisfy (A 7) and (A 8). Bi is
then reduced incrementally using the converged values of a

m
and B(#)

n
from the previous

Bi as the initial guesses.
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The number of collocation points was increased until two convergence criteria
were obeyed. The migration velocity (specified by the value of B(#)

#
) converged to

within 10−& :

B(#)(N,M)

#
®B(#)(N−",M−")

#

B(#)(N,M)

#

! 10−&, (A 9)

and the values of Γ(θ) and �
s
(θ) converged to within 10−$ at 37 equally spaced positions

(every 5°) on the droplet surface. (In all cases, the collocation points at θ
i
¯ 0 and π

are displaced slightly, i.e. θ
i
¯ 0–0.8° and π®0.8°).

This procedure works very well for all cases. The required number of collocation
points, (NM )}2, increases for small values of E, δ, Bi or k(! 0.1). For example, at
κ¯ 0, E¯ 0.1, k¯ 0.5, λ¯ 1, and Bi! 0.1, the maximum number of collocation
points required is 84. For the general inviscid bubble case, when Ma, Bi and k are larger
than unity, only 16 collocation points are needed. For κ" 0, fewer points are required
for any value of Bi, k and E. Similarly, for large Bi, E, δ or k, fewer points are required.
These convergence criteria were further verified by increasing the number of collocation
points (sometimes by up to a factor of 4) for several cases. In all cases, the convergence
criteria reported here were sufficient to provide converged results to four significant
figures for all computed profiles.

In addition to confirming that numerical results fell to expected limits, an additional
analytical check was made on the program. Equations (A 7) and (A 8) were integrated
numerically at zero E. For this limit, U is unity and an exact analytical solution for Γ(θ)
is obtained. Numerical Γ(θ) profiles were confirmed as agreeing with this exact
solution.
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